Heterogenous vascular effects of AP5A in different rat resistance arteries are due to heterogenous distribution of P2X and P2Y(1) purinoceptors.
نویسندگان
چکیده
In the accompanying article, we showed that AP5A displayed heterogenous vasoactive effects in rat resistance arteries. It induced a stable vasoconstriction in the superior epigastric artery (SEA) and a transient vasoconstriction in the mesenteric resistance artery (MrA). In the phenylephrine-precontracted MrA AP5A induced a marked vasorelaxation. In this study the noncompetitive inhibition of the AP5A-induced vasoconstriction with pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid was found to be significantly stronger in MrA than in SEA. The nonselective P2 purinoceptor antagonist suramin inhibited AP5A-induced vasoconstriction in MrA only. The vasoconstriction by the P2X purinoceptor agonist alpha,beta-methylene ATP was inhibited by with pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid and suramin similarly to that induced by AP5A. Thus, the AP5A-induced vasoconstriction is due to P2X receptor activation, but two different P2X receptors seem to be operational in the two different vessels. The AP5A-induced vasorelaxation of phenylephrine-precontracted MrA was inhibited by the P2Y(1) receptor antagonist ADP3'5'. The vasorelaxation induced by ADPbetaS (P2Y(1) agonist) also was inhibited by ADP3'5'. These findings suggest that AP5A-induced vasorelaxation of MrA is caused by P2Y(1) receptor activation. The P1 (A(2)) receptor antagonist 3, 7-dimethyl-1-propargylxanthine only slightly inhibited AP5A-induced vasorelaxation at high concentrations. Adenosine and the A(2) receptor agonist CGS21680 failed to produce significant vasorelaxation. Therefore, vasorelaxation in MrA does not involve A(2) purinoceptor activation. AP5A-induced vasorelaxation was not inhibited by Ca(2+)- or ATP-dependent K(+) channel blockade with clotrimazole, apamin, or glibenclamide. These data indicate that vasoconstriction in MrA and SEA by AP5A is due to different P2X receptors, and vasorelaxation in precontracted MrA is due to P2Y(1) receptor activation.
منابع مشابه
Vasoactivity of diadenosine polyphosphates in human small renal resistance arteries.
BACKGROUND We examined for the first time the vascular effects of purinergic agents that contribute to the regulation of peripheral vascular resistance in human small renal resistance arteries (hRRAs). METHODS AND RESULTS Diadenosine polyphosphates (ApnAs, n = 3-6) and ATP, mounted in a microvessel myograph, caused vasoconstriction in hRRAs (rank order of potency: Ap5A > Ap6A = Ap4A > Ap3A = ...
متن کاملSegmental pulmonary vascular responses to ATP in rat lungs: role of nitric oxide.
ATP exhibits vascular pressor and depressor responses in a dose- and tone-dependent manner. The vascular site of ATP-induced contraction or dilation has not previously been characterized. Using the vascular occlusion technique, we investigated the effects of ATP in isolated rat lungs perfused with autologous blood (hematocrit = 20%) and described its action during resting and elevated tone in t...
متن کاملP2Y11 purinoceptor mediates the ATP-enhanced chemotactic response of rat neutrophils.
ATP and hydrolysis products of ATP like adenosine regulate the chemotaxis of neutrophils by activating purinoceptors and adenosine receptors. The present study was designed to examine exogenous ATP, activation of purinoceptors, and activation of A(3) adenosine receptor as key steps in the signal cascades that control cell orientation and migration of rat neutrophils. One or more of those steps ...
متن کاملMesenteric and renal vascular effects of diadenosine polyphosphates (APnA).
Diadenosine polyphosphates (APnA) are endogenous dinucleoside molecules consisting of two adenosine moieties linked via their 5'-ribose positions by a variable number of phosphate groups. APnA have been shown to be present in different cell types and to be released from platelets as well as co-released with catecholamines and ATP from bovine adrenal medulla. Candidate metabolites of APnA are AT...
متن کاملRoles of P2-purinoceptors in the cardiovascular system.
Characterization of P2-purinoceptor subtypes has facilitated understanding of the many diverse effects produced by purine nucleotides. P2X-Purinoceptors are located on vascular smooth muscle where they mediate vasoconstriction resulting from ATP released as a cotransmitter with noradrenaline from sympathetic nerves. P2Y-Purinoceptors are usually located on the vascular endothelium where they ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 294 3 شماره
صفحات -
تاریخ انتشار 2000